On Prime Near-Rings with Generalized Derivation
نویسندگان
چکیده
منابع مشابه
On Prime Near-Rings with Generalized Derivation
LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated deriva...
متن کاملGeneralized Derivations on Prime Near Rings
Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...
متن کاملOn Prime-Gamma-Near-Rings with Generalized Derivations
Copyright q 2012 Kalyan Kumar Dey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let N be a 2-torsion free prime Γ-near-ring with center ZN. Let f, d and g, h be two generalized derivations on N. We prove the following res...
متن کاملOn 3-prime Near-rings with Generalized Derivations
We prove some theorems in the setting of a 3-prime near-ring admitting a suitably constrained generalized derivation, thereby extending some known results on derivations. Moreover, we give an example proving that the hypothesis of 3-primeness is necessary.
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2008
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2008/490316